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Critical statistics for non-Hermitian matrices
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We introduce a generalized ensemble of non-Hermitian matrices interpolating between the Gaussian Unitary
Ensemble, the Ginibre ensemble, and the Poisson ensemble. The joint eigenvalue distribution of this model is
obtained by means of an extension of the Itzykson-Zuber formula to general complex matrices. Its correlation
functions are studied both in the case of weak non-Hermiticity and in the case of strong non-Hermiticity. In the
weak non-Hermiticity limit we show that the spectral correlations in the bulk of the spectrum display critical
statistics: the asymptotic linear behavior of the number variance is already approached for energy differences
of the order of the eigenvalue spacing. To lowest order, its slope does not depend on the degree of non-
Hermiticity. Close the edge, the spectral correlations are similar to the Hermitian case. In the strong non-
Hermiticity limit the crossover behavior from the Ginibre ensemble to the Poisson ensemble first appears close
to the surface of the spectrum. Our model may be relevant for the description of the spectral correlations of an
open disordered system close to an Anderson transition.
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I. INTRODUCTION

Non-Hermitian random matrix models were first intr
duced by Ginibre in 1965@1#. His motivation was to describe
the statistical properties of nuclear resonances with a fi
width in complete analogy with the description of the po
tion of resonances by means of Hermitian random ma
ensembles as introduced by Wigner and Dyson@2#. Since
then, eigenvalues of non-Hermitian operators occurring
many different fields have been analyzed in terms of n
Hermitian random matrix models, usually with additional i
gredients. We mention several examples. The statistical p
erties of the poles ofS matrices have been analyzed in gre
detail in @3–5#. In QCD, the Euclidean Dirac operator i
QCD at nonzero chemical potential~which can be inter-
preted as an imaginary vector potential! is non-Hermitian,
resulting in the failure of the quenched approximation@6#.
Both this failure and the generic properties of the comp
Dirac spectrum have been explained fully in terms of a n
Hermitian random matrix model with the global symmetri
of QCD @7–11#. Recently, a delocalization transition wa
found in a one-dimensional lattice model with an imagina
vector potential@12,13#. Statistical correlations predicted b
the Ginibre ensemble have been found in dissipative qu
tum maps@14–16#. Eigenvalue spacings of the Floquet m
trix of a Fokker-Planck equation have been described
terms of Ginibre statistics@17#. In @18,19# an ensemble of
asymmetric real matrices, closely related to the Ginibre
semble, was utilized to model the dynamics of a neural n
work.

Among more mathematically oriented works we menti
the exact calculation of the correlation functions of an e
semble of normal random matrices with an arbitrary polyn
mial probability potential@20,21#. Non-Hermitian ensemble
have been analyzed in terms of associated Hermitian
sembles@22,23#. Correlations of eigenfunctions have be
studied in the Ginibre ensemble@24#. Another intriguing ap-
plication is the description of an analytic curve by the boun
1063-651X/2002/66~1!/016132~13!/$20.00 66 0161
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ary of the support of the complex spectrum of a no
Hermitian random matrix theory@25,26#. Finally, we point
out that there are interesting relations between the eigen
ues of complex matrices and the positions of particles
certain two dimensional physical systems@27–29#. For ex-
ample, the Ginibre model is equivalent to a Coulomb pro
lem in two dimensions@1#.

Based on the magnitude of the imaginary part of the
genvalues we distinguish two types of non-Hermiticity: we
non-Hermiticity and strong non-Hermiticity. Weak non
Hermiticity is the limit of large matrices when the imagina
part of the eigenvalues remains comparable with the m
separation of eigenvalues along the real axis. This limit w
identified in @30–32#, but was used earlier in the statistic
theory of S matrices@3#. Strong non-Hermiticity refers to
cases for which the real and imaginary parts of the eigen
ues remain of the same order of magnitude in the thermo
namic limit. In this paper we consider both types of no
Hermiticities.

An important concept in the understanding of disorde
systems is the Thouless energy. We will define this ene
scale as the energy difference below which the eigenva
are correlated according to random matrix theory. In dif
sive disordered systems, in the thermodynamic limit, b
the eigenvalue spacing and the Thouless energy appr
zero, whereas the number of eigenvalues in between t
approaches infinity. In this paper we will consider critic
statistics@33–36#, which refers to the case when the ratio
the Thouless energy and the eigenvalue spacing remain
nite in the thermodynamic limit. A Hermitian random matr
model for critical statistics was proposed in@37#. In that
model the correlations of the eigenvalues decay expon
tially beyond a Thouless energy, resulting in an asympt
cally linear behavior of the number variance with slo
~level compressibility! less than 1. In this paper we genera
ize this model to complex eigenvalues and analyze its pr
erties. In the Ginibre model the two-point correlation fun
tion of eigenvalues in the bulk of the spectrum drops
©2002 The American Physical Society32-1
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exponentially on the scale of the distance between the ei
values. It is therefore no surprise that we will find the sa
bulk correlations in such a generalized Ginibre model. Ho
ever, we find nontrivial long range surface correlations, ch
acteristic of a two-dimensional Coulomb liquid. In the ca
of weak non-Hermiticity we expect to find critical statistic
similar to the Hermitian model. The analysis of this case
the main objective of this paper.

Critical statistics is associated with the multifractal beha
ior of the eigenfunctions@36,38,39#. The critical Hermitian
model introduced in@37# has the unitary invariance of th
Gaussian Unitary Ensemble with eigenvectors that are
tributed according to the measure of the unitary group. T
is no contradiction: multifractality of wave functions occu
in a specific basis in which disorder competes with a hopp
term. Indeed, in@40,41# it was found that the fractal dimen
sion of the wave function determines the asymptotic slope
the number variance.

Among others, critical statistics have been utilized to d
scribe the spectral correlations of a disordered system a
Anderson transition in three dimensions@33,42#, two-
dimensional Dirac fermions in a random potential@43#, the
quantum Hall transition@44#, and a QCD Dirac operator in
liquid of instantons@45,46#. The scope of universality o
critical statistics is still under debate.

Our random matrix model is introduced in Sec. II. T
cases of strong non-Hermiticity and weak non-Hermitic
are analyzed in Secs. III and IV, respectively. Among oth
we derive a closed expression for the two-point correlat
function in both limits. Results for the number variance a
discussed in Sec. V and concluding remarks are given
Sec. VI.

II. INTRODUCTION OF THE MODEL

Recently, a Hermitian random matrix model for critic
statistics was introduced by Moshe, Neuberger, and Sha
@37#. This model, which interpolates between Wigner-Dys
statistics and Poisson statistics, is defined by the joint eig
value probability distribution

P~H !dH5dHE dUe2(11b)Tr H21b Tr UHU†H†
, ~1!

whereH is a Hermitiann3n matrix. The integral is over the
unitary group with invariant measure denoted bydU. Criti-
cal statistics@36# is obtained in the thermodynamic limit wit
b scaling asb5h2n2 at fixed h. In that case, the two-poin
correlation function decays exponentially at large distan
and the number variance has an asymptotic linear beha
with slope less than 1. In the thermodynamic limit, Wigne
Dyson statistics is obtained for a weakern dependence ofb,
and Poisson statistics is found for a strongern dependence
of b.

In this paper we are interested in ensembles of n
Hermitian random matrices. The study of random matri
with no restrictions imposed was initiated by the classi
work of Ginibre @1#. He found closed expressions for th
01613
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two-point correlation function of the eigenvalues of a Gau
ian ensemble of random matrices with complex entries.

An ensemble that interpolates between the Ginibre
semble and the Wigner-Dyson ensemble of Hermitian ma
ces was introduced in@31,32#

P~C!dC;dC expF2
1

12t2
Tr C†C1

t

2~12t2!

3Tr @C21~C†!2#G . ~2!

Here,C is an arbitraryn3n complex matrix with the inte-
gration measure given by the product of the real and ima
nary parts of the differentials of the matrix elements ofC.
For t50 this model reduces to the Ginibre ensemb
whereas fort51 (21) it reduces to a Gaussian ensemble
~anti-! Hermitian matrices. The eigenvalues of this ensem
are scattered inside an ellipse with eccentricity given
2At/(11t).

The joint eigenvalue distribution can be obtained by us
two alternative decompositions

C5UTU† and C5VLV21, ~3!

whereU is a unitary matrix,V is a similarity transformation,
T is a upper-triangular matrix, andL is a diagonal matrix.
The diagonal matrix elements ofT coincide with the com-
plex eigenvaluesLkk5zk . The invariant measure factorize
as @2#

dC;dUdTD~$Lkk%!D~$Lkk* %! ~4!

with the Vandermonde determinant defined by

D~$zk%!5)
k, l

n

~zk2zl !. ~5!

Since the Gaussian integral over the off-diagonal matrix
ements ofT factorizes, it can be performed trivially. Th
integral overU is equal to the group volume. The joint prob
ability distribution of the eigenvalues is thus given by

P~L!dL;dLuD~L!u2expH 2
1

12t2 (
i 50

n F uzi u2

2
t

2
@zi

21~zi* !2#G J . ~6!

This model has been analyzed in two domains: weak n
Hermiticity and strong non-Hermiticity. In the first case th
thermodynamic limit is taken at fixedn(12t), whereas in
the case of strong non-Hermiticity21,t,1 remains fixed
for n→`. The two-point correlation function of this mode
was derived in@31,32#.

In this paper, we analyze a model that interpolates in
tween the models defined in Eqs.~1! and ~6!. Our random
matrix model is defined by
2-2
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P~C!dC;dCe2a1 Tr C†C2(a2 /2)Tr[C21(C†)2]

3E dUea3 Tr UCU†C†
, ~7!

where isC an arbitrary complexn3n matrix anddU is the
Haar measure of the unitary group U(n). In the special case
of C being a normal matrix (@C,C†#50), a unitary transfor-
mation bringsC to a diagonal form and the integral overU is
the standard Itzykson-Zuber integral@47# given by

E dUea3 Tr UCU†C†
5

detea3zizj*

D~$zk%!D~$zk* %!
, ~8!

where thezi are the eigenvalues ofC. One thus finds the
joint eigenvalue distribution

P~$zk%!;expH 2(
i 5n

n Fa1uzi u21
a2

2
~zi

21zi*
2!G J det@ea3zizj* #.

~9!

In the following paragraph we will show that this result
valid even if C is an arbitrary complex matrix that can b
decomposed according to Eq.~3!.

We start from the triangular decompositionC5UTU†.
Since T is an upper-triangular matrix, the exponent in t
integral overU in Eq. ~7! is then given by

Tr UCU†C†5(
j <k
i< l

Ui j TjkUlk* Til* . ~10!

After performing a trivial U(1) integration, the integral ove
U in Eq. ~8! is over SU(n). The generating function for suc
integrals is given by

E
UPSU(n)

dUeTr (JU†1J†U)5F~detJ,detJ†,$Tr@J†J#k%!,

~11!

whereJ is a complexn3n matrix and the functional form o
the right-hand side, withk running over all positive integers
follows from the invariance of the group integral. In the e
pansion of the exponent~10! all terms have the same numb
of factorsU andU* . By differentiating Eq.~11! with respect
to J and J* at J50, we find that such terms can be on
nonvanishing if the sum of the indices ofU is equal to the
sum of the indices ofU* ~for the terms that enter in th
expansion of the determinant, the sum of the first indice
equal to to sum of the second indices!. We thus find that in
the expansion of Eq.~10! all terms with off-diagonal ele-
ments ofT or T† vanish after integration. We conclude th
the result~8! for the Itzykson-Zuber integral is also valid fo
an arbitrary complex matrixC with eigenvalueszk .

For convenience, the constants in the joint eigenvalue
tribution of Eq.~7! will be parametrized as

a15
l

12t2
,

01613
is

s-

a252
lt

12t2
1

la2

t~12a2!
,

a35
la

t~12a2!
. ~12!

After a rescaling of the matrix elements ofC by a factor
1/Al the joint eigenvalue distribution of the model~7! re-
duces to

P~L!dL;dLexpH 2(
i 51

n F 1

12t2
uzi u2

2
t

2~12t2!
~zi

21zi*
2!1

a2

2t~12a2!

3~zi
21zi*

2!G J det@e[a/t(12a2)]zizj* #. ~13!

We will analyze this model in two limits. The case when
2t remains finite in the thermodynamic limit will be re
ferred to as strong non-Hermiticity. In this class of mode
we will consider the limiting case of zero eccentricity,

a→0, t→0 with
a

t
5b fixed, ~14!

which reduces to the Ginibre model in the limit in which th
parameterb is taken to zero. On the other hand, the case
weak non-Hermiticity@31,32# is defined by the limit

t→1, n→`, ~12t!n5a2 fixed. ~15!

Finally, let us mention that the wave functions of our mod
are distributed according to the invariant Haar measure
U(n). It could be that for diagonalU in Eq. ~7! the wave
functions show a multifractal behavior, but that this prope
is obscured by averaging over allU, whereas eigenvalue cor
relations remain unaffected.

III. STRONG NON-HERMITICITY

In this section we consider the case of strong no
Hermiticity Eq. ~14!. In order to rewrite the Itzykson-Zube
determinant in Eq.~13! in terms of an expectation value o
two Slater determinants, we expand the exponential as

ebzizj* 5 (
m50

`
bm

m!
zi

m~zj* !m. ~16!

By a series of elementary manipulations we find
2-3
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detebzizj* 5 (
m150

`

••• (
mn50

`
bm11•••1mn

m1! •••mn! (
pPSn

~21!s(p)

3z1
m1~zp~1!

* !m1
•••zn

mn~zp~n!
* !mn

5 (
m1,m2,•••,mn

bm11 . . . 1mn det
zi

mj

Amj !
det

zk
* ml

Aml !
.

~17!

Including the other factors of the joint probability distribu
tion, we thus find

P~z!dz; (
m1,m2,•••,mn

bm11•••1mn

3detfmj
~zi !detfml

~zk* !, ~18!

where the normalized wave functions given by

fk~z!5
1

Apk!
zke2uzu2/2, ~19!

satisfy the orthogonality relation

E d2zfk* ~z!f l~z!5dkl . ~20!

They are the single-particle wave functions of the low
Landau level of a particle with unit mass in a constant m
netic field perpendicular to the plane. The Hamiltonian
this system is given by (z5x1 iy)

H5 1
2 ~ i ]x2y!21 1

2 ~ i ]y1x!2 ~21!

and the corresponding Schro¨dinger equation reads

Hfk~z!5fk~z!. ~22!

If we write

b5e2b, ~23!

the joint probability distribution is equal to the diagonal e
ement of then-body density matrix of the lowest Landa
level fermions at temperature 1/b, with an additional
degeneracy-breaking Hamiltonian given by the abso
value of the angular momentum

L5 iy]x2 ix]y , ~24!

or equivalently of

H̃5H12L5 1
2 ~ i ]x1y!21 1

2 ~ i ]y2x!2. ~25!

The average spectral densityrn(z), which can be interpreted
as the one-particle density, is obtained by integrating
joint eigenvalue density over all coordinates except one.
using the orthogonality relations~19! one easily finds
01613
t
-
f

e

e
y

rn~z!5
1

Zn
(

m1,m2,•••,mn
(
i 51

n

e2b(m11•••1mn)

3fmi
~z!fmi

~z* !, ~26!

or in an occupation number representation

rn~z!5
1

Zn
(

n11n21•••5n
expS 2b(

p
pnpD

3 (
k50

`

nkfk~z!fk~z* !, ~27!

where the occupation numbernk runs over$0,1%. The parti-
tion functionZn is defined in the usual way,

Zn5 (
n11n21•••5n

expS 2b(
p

pnpD . ~28!

Such sums can be easily evaluated in the grand canon
ensemble

r~z!5
1

Z (
n

znZnrn~z!5 (
k51

n
fk~z!fk~z* !

11z21ebk
[

1

p
k~z,z!,

~29!

where we have introduced the prekernel

k~z1 ,z2!5e2z1z2* (
k50

`
~z1z2* !k

k! ~11z21ebk!
. ~30!

The fugacity z is determined by the normalization of th
one-particle density

n5 (
k50

`
1

11z21ebk
. ~31!

For b!1 the sum can be converted into an integral result
in

z5enb21. ~32!

Similarly, the two-point correlation function is obtaine
by integrating over all eigenvalues except two. Again by g
ing to the grand canonical ensemble one easily derives
the connected two-point correlation can be factorized in
result for the Ginibre ensemble and the prekernel~30!,

R2~z1 ,z2!52
1

p2
e2uz12z2u2uk~z1 ,z2!u2. ~33!

For b!1 butnb@1, a partial resummation of the prekern
~30! results in

k~z1 ,z2!5 (
k50

`
G~k11,z1z2* !

k!

b

4 cosh2@b~k2n!/2#
,

~34!
2-4
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whereG(k,x)5*x
`tk21e2tdt is the incompleteG function.

For b→0 it is justified to make the approximation

1

11eb(k2n)
2

1

11eb(k112n)
'

b

4 cosh2@b~k2n!/2#
.

~35!

In the remainder of this section we will evaluate the prek
nel in several limiting situations.

If the distance ofz1 andz2 ~both inside the disk of eigen
values! to the surface of the disk is much larger thanb, the
numerator attains its maximum value when the Fermi-Di
factor is close to unity. In that case the Fermi-Dirac distrib
tion can be replaced by a sharp cutoff and the two-po
correlation function is given by

R2~z1 ,z2!52
1

p2
e2uz12z2u2. ~36!

Inside the disk the average spectral density is 1/p. The un-
folded two-point spectral correlation function thus coincid
with the Ginibre result.

A more interesting situation arises in case bothz1 andz2
are close to the surface of the disk of eigenvalues. A n
trivial thermodynamic limit of the surface correlations is o
tained for

b;
1

An
,

uz1z2* u;n,

arg~z1z2* !;
1

An
. ~37!

Using the asymptotic expansion for the incompleteG func-
tion we find

k~z1 ,z2!5
b

Ap
(
k50

` Erfc@~z1z2* 2k!/A2k#

4 cosh2@b~k2n!/2#

'
b

Ap
E

2`

`

dt
Erfc@~z1z2* 2n2t !/A2~n1t !#

4 cosh2~bt/2!
,

~38!

where Erfc(x)5*x
`e2t2dt. We parametrize the vicinity of the

surface of the domain of eigenvalues as

zk5An1sk , k51,2, and s5
s11s2*

2
, ~39!

wheren@1 and usku!An. Introducing the scaled tempera
ture h by

b5
1

hAn
, ~40!
01613
-

c
-
t

s

-

the prekernel simplifies forn→` to

k~z1 ,z2!5
2

Ap
E

2`

`

dt
Erfc@A2~s2ht!#

4 cosh2t
. ~41!

To the leading order inh, this expression can be simplifie
further,

k~z1 ,z2!5
2

Ap
E

sA2

`

dye2y2E
2`

`

dt
e2A2yht

4 cosh2t

52A2pE
s

`

dy
ye22y2

sin~2pyh!
. ~42!

For s@1, the above integral is dominated by the lower e
point and is approximated by

k~z1 ,z2!;Ap

2

he22s2

sin~2psh!
. ~43!

Accordingly, the spectral density near the edge to the lead
order inh is given by

r~z5An1s!5
1

p
k~z,z!5

2A2

Ap
E

s

`

dy
yhe22y2

sin~2pyh!

;
1

A2p

he22s2

sin~2psh!
. ~44!

At zero temperature,h→0, it reduces to the spectral densi
for the Ginibre ensemble close to the edge given by@2#

r(s)5e22s2
/(2p)3/2s. Likewise, the two-point function

given by Eq.~33! simplifies to

R2~z15An1s1 ,z25An1s2!

52
1

2p

h2e2[(s11s1* )21(s21s2* )2]/2

usin@p~s11s2* !h#u2
~45!

for us11s2* u@1. As a consistency check, we find that th
zero-temperature limit fory12y2@xk ~with sk5xk1 iyk) ,

R2~z1 ,z2!52
1

2p3

e22(x1
2
1x2

2)

~y12y2!2
, ~46!

is in agreement with the result in@48# although different
prefactors have appeared in the literature@49,28#. We men-
tion that at zero temperature the asymptotic behavior of
prekernel can be obtained directly from its definition~30!
and agrees with Eq.~46!.

On the other hand, in the high-temperature limit t
Fermi-Dirac distribution in Eq.~30! can be replaced by a
Boltzmann distribution. The prekernel is thus given by

k~z1 ,z2!5e2z1z2* (
k50

`
~z1z2* !k

k!
ze2bk. ~47!
2-5
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In this limit the fugacityz5bn, resulting in

k~z1 ,z2!5bn. ~48!

This requires us to define the scaled temperature by

b5
1

hn
, ~49!

as opposed to the low-temperature case~40!. The spectral
density is thus given by

r~z!5
1

ph
, ~50!

and the two-point correlation function has the exponen
form

R2~z1 ,z2!52
1

p2h2
e2uz12z2u2. ~51!

Since the average spectral density decreases as 1/h, the un-
folded eigenvalues become uncorrelated~Poisson statistics!
in the high-temperature limit.

IV. WEAK NON-HERMITICITY

In the case of weak non-Hermiticity, we start from th
identity

e[a/t(12a2)]zizj* 5A12a2e[a2/2t(12a2)](zi
2
1zj*

2
)

3 (
m50

`
am

m!
HmS zi

At
D HmS zj*

At
D , ~52!

whereHm(z) are the Hermite polynomials. Performing e
actly the same manipulations as in Eq.~17! we obtain

dete[a/t(12a2)]zizj* 5~A12a2!n (
m1,m2,•••,mn

am11•••1mn

3det

e[a2/2t(12a2)]zj
2
HmiS zj

At
D

Ami !

3det

e[a/2t(12a2)]zk*
2
HmlS zk*

At
D

Aml !
. ~53!

The joint probability distribution~13! can thus be written as

P~z!;pn~12a2!n/2~12t2!n/2

3 (
m1,m2,•••,mn

S a

t D m11•••1mn

3detfmi
~zj !detfmk

~zl* !, ~54!

where the wave functions defined by
01613
l

fk~z!5
tk/2

Ap~12t2!1/4Ak!
HkS z

At
D

3expS 2
1

2

1

12t2
@ uzu22tz2# D ~55!

satisfy the orthogonality relations@50#

E d2zfk~z* !f l~z!5dkl . ~56!

The above wave functions~55! also span the set of the sing
particle wave functions in the lowest Landau level obeyi
the Schro¨dinger equation~21!,~22!, which, in terms of prop-
erly rescaled coordinates, reads

F1

2
~12t2!S i ]x2

y

12t2D 2

1
1

2
~12t2!S i ]y1

x

12t2D 2Gfm5fm . ~57!

If we write

a

t
5e2b, ~58!

the joint eigenvalue distribution may be interpreted as
diagonal element of then-body density matrix of the lowes
Landau level fermions at temperature 1/b. The Schro¨dinger
equation corresponding to Eq.~25! now reads

F1

2
~11t!S i ]x1

y

12t2D 2

1
1

2
~12t!S i ]y2

x

12t2D 2

1
t

12t2
~x1 iy !2Gfm5~2m11!fm . ~59!

Although, this relation is physically appealing we do not re
on it to obtain our results.

Now we turn to the calculation of correlation function
Thep-particle correlation function is obtained by integratin
P(z1 , . . . ,zn) over zp11 , . . . ,zn . Using the orthogonality
of the wave functions and expressing Eq.~54! as a single
determinant, one easily finds

Rp
n~z1 , . . . ,zp!5

n!

~n2p!! E d2zp11•••d2znPn~z!

5
1

Zn
(

m1,m2,•••,mn

deti , j 51, . . . ,p

3 (
k51

n

e2bmkfmk
~zi !fmk

~zj* !. ~60!
2-6
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Here, the overall normalization constantsZn have been cho-
sen such that the joint probability integrates to unity. In
occupation number representation this correlator can be w
ten as

Rp
n~z1 , . . . ,zp!5

1

Zn
(

n01n11•••5n
deti , j 51, . . . ,p

3expS 2b(
q

qnqD
3 (

k50

`

nkfk~zi !fk~zj* !, ~61!

where the occupation numbernk runs over$0,1%. Such sums
are easily calculated in the grand canonical ensemble

Rp~z1 , . . . ,zp!5
1

Z (
n50

`

znZnRp
n~z1 , . . . ,zp!, ~62!

wherez is the fugacity andZ is the grand canonical partitio
function given by

Z5)
k50

`

~11ze2bk!. ~63!

In the thermodynamic limit the correlators obtained
means of the grand canonical ensemble coincide with th
from the canonical ensemble. The sum of thenk can now be
performed easily. The result is given by

Rp~z1 , . . . ,zp!5deti , j 51, . . . ,pK~zi ,zj !, ~64!

with the kernel defined by

K~zi ,zj !5 (
k50

` fk~zi !fk~zj* !

11z21ebk
. ~65!

The average spectral density, obtained by integrating ove
eigenvalues except one, is thus given by

r~z!5K~z,z!5 (
k50

`
fk~z!fk~z* !

11z21ebk
. ~66!

The fugacity follows from the normalization integral and
given by

n5 (
k50

`
1

11z21ebk
. ~67!

Similarly, the two-point correlation function is obtained b
integrating over all eigenvalues except two. Subtract
r(z1)r(z2) results in the connected two-point correlatio
function given by

R2~z1 ,z2!52uK~z1 ,z2!u2. ~68!

As in the case of strong non-Hermiticity, the kernel can
simplified by means of a partial resummation,
01613
n
it-

se

all

g

e

K~zi ,zj !5 (
m50

`

(
k50

m

fk~zi !fk* ~zj !

3F 1

11z21ebm
2

1

11z21eb(m11)G
5 (

m50

`

Km
0 ~zi ,zj !

3F 1

11z21ebm
2

1

11z21eb(m11)G , ~69!

where the zero-temperature kernel is defined by

Km
0 ~zi ,zj !5 (

k50

m

fk~zi !fk~zj* !. ~70!

A. Correlations in the bulk

The bulk scaling limit of the zero-temperature kernel~70!
was analyzed in detail in@32#. We will recall their method
for the sake of completeness. Using an integral represe
tion of the Hermite polynomials, it can be rewritten as

Km
0 ~z1 ,z2!5

1

2p2tA12t2
expS 2

1

2~12t2!
F uz1u21uz2

2u

2
t

2
~z1

21z2
21z1*

21z2*
2!G1

1

2t
~z1

21z2*
2!D

3E
2`

` E
2`

`

drdse(2r 2/21 irz12s2/22 isz2* )/t1rs

3
G~m11,rs!

m!

5
1

p2tA12t2
expS 2

1

2~12t2!
F uz1u21uz2

2u

2
t

2
~z1

21z2
21z1*

21z2*
2!G1

1

2t
~z1

21z2*
2!D

3E
2`

` E
2`

`

dudv

3eu2(121/t)2v2(111/t)1 iu(z12z2* )/t1 iv(z11z2* )/t

3
G~m11,u22v2!

m!
, ~71!

where r 5u1v and s5u2v. The v integral can be per-
formed by a saddle-point approximation. To the leading
der, the argumentv in the incompleteG function can be
replaced by its saddle-point value given by
2-7
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v̄5
i ~z11z2* !

2~11t!
. ~72!

For u22v2;m andm→`, the incompleteG function can be
approximated by a step function

1

m!
G~m11,u22v2!'1 for u2,m1 v̄25m2

x2

~11t!2

~73!

and zero otherwise, depending on whether its integration
main contains the saddle point or not. We thus find the ke

Km
0 ~z1 ,z2!

5
Ap

p2tA12t2A111/t
E

2Am1 v̄2

Am1 v̄2

dueu2(121/t)1 iu(z12z2* )/t

3expS 2
1

2~12t2!
F uz1u21uz2

2u2
t

2
~z1

21z2
21z1*

2

1z2*
2!G1

1

2t
~z1

21z2*
2!2

~z11z2* !2

4t~t11! D . ~74!

In the limit of weak non-Hermiticity we magnify the bulk o
the spectrum according to

z15xAn1
pr

2An
1 i

y1

An
,

z25xAn2
pr

2An
1 i

y2

An
,

t2512
a2

n
, ~75!

where22,x,2. Forn→` this results in

Km
0 ~z1 ,z2!5

nAp

p2aA2
e2(1/a2)(y1

2
1y2

2)1( i /2)x(y12y2)

3E
2A(m1 v̄2)/n

A(m1 v̄2)/n
due2(a2u2/2)1 iu[pr 1 i (y11y2)] .

~76!

For b→0 the sum overm can be replaced by an integra
In this limit the kernel~69! is given by

K~z1 ,z2!5E
211x2/4

`

ndt
bKn(11t)

0 ~z1 ,z2!

4 cosh2~bnt/2!

5
n2

paA2p
E

211x2/4

`

dt
2b

4 cosh2~bnt/2!

3E
0

A11t2x2/4
due2a2u2/2 cosu@pr 1 i ~y11y2!#
01613
o-
el

3e2(1/a2)(y1
2
1y2

2)1( i /2)x(y12y2)

5
n

paA2p
E

2`

`

dp
1

11e(p2211x2/4)/h

3e2(a2p2/2)eip[pr 1 i (y11y2)]

3e2(1/a2)(y1
2
1y2

2)1( i /2)x(y12y2), ~77!

where the combination

nb[
1

h
~78!

is kept fixed in the thermodynamic limit. Finally, we deriv
the small h limit of the kernel for x in the center of the
spectrum (x'0). The second integral in Eq.~77! is rewritten
by expressing the Gaussian term as

e2a2u2/21 iu[pr 1 i (y11y2)]

5
1

aA2p
E

2`

`

dse2 [s2pr 2 i (y11y2)] 2/2a2 1 isu.

~79!

After performing the integral overu we obtain

K~z1 ,z2!5
n

p2a2E2`

`

dse2[s2pr 2 i (y11y2)] 2/2a2

3E
21

`

dt
sin~sA11t !

cosh2
t

2h

e2(1/a2)(y1
2
1y2

2). ~80!

The integral overt can be performed to leading order inh. In
that caseA11t can be expanded to first order int and the
resulting integral overt, after extending its lower limit to
2`, is known analytically. We finally obtain

K~z1 ,z2!5
nh

2pa2
e2(y1

2
1y2

2)/a2E
2`

`

dse2[s2pr 2 i (y11y2)] 2/2a2

3
sins

sinh~psh/2!
. ~81!

Sometimes it is useful to explicitly display theh50 contri-
bution to the kernel. From the second integral in Eq.~77! at
2-8
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h50 one can explicitly find the zero-temperature result
ported in @31#. By subtracting and adding this term to E
~81! we find

K~z1 ,z2!5
2n

pa

1

A2p
e2(y1

2
1y2

2/a2)F E
0

1

due2 (au)2/2

3cos$u@pr 1 i ~y11y2!#%1
ph

2aA2p

3E
2`

`

dsS sins

sinh~phs/2!
2

sins

phs/2D
3e2(1/2a2)$s2[ rp1 i (y11y2)] %2G , ~82!

where the first and third integrals cancel each other.
The spectral density at the center of the band is given

r~y!5K~z5 iy /An,z5 iy /An!

5
2n

pa

1

A2p
Fe22y2/a2E

0

1

dte2a2t2/2 cosh~2ty!1
ph

aA2p

3E
0

`

dtS sint

sinh~pht/2!
2

sint

pht/2D
3e2t2/2a2

cos~2yt/a2!G , ~83!

where y15y25y. The integral over Im(z) of the spectral
density is given by

E
2`

`

K~z,z!d Imz5
1

An
E

2`

`

r~y!dy5
An

p
. ~84!

FIG. 1. K̄(z1 ,z2) @Eq. ~85!# at x5y15y250.
01613
-

y

In Fig. 1, we show the normalized kernelK̄(z1 ,z2) defined
by

K̄~z1 ,z2!5
K~z1 ,z2!

Ar~z1!r~z2!
~85!

for h50.15 and different values of the non-Hermiticity p
rameter. We find that the spectral correlations weaken
increasing values ofa and approach the result for the Ginib
ensemble fora'2. Although not shown in the picture, it wa
verified numerically that the exact result~77! is almost indis-
tinguishable from the smallh result~82! for values ofh up to
h;0.3, and significant differences are only found for valu
of h as large ash'1. The normalized critical kernel fo
Hermitian ensembles@37# is easily reproduced from the rati
~85! starting from the expression~81! and taking the limit
a→0,

K̄~z1 ,z2!→ ph

2

sin~pr !

sinh~p2rh/2!
. ~86!

If we consider thea→0 limit of the kernel~82! or the spec-
tral density ~83!, d functions of the imaginary part of the
eigenvalues have to be taken into account carefully. For
ample, thea→0 limit of the spectral density~83! is given by

r~z!5
n

p
d~y!. ~87!

Finally, let us mention that fora@1 we recover the Gini-
bre’s kernel for general complex matrices.

B. Correlations at the edge

Next we consider a microscopic scaling limit at the vici
ity of either edge of the band of eigenvalues forz;62An,
as an extension of the edge correlation of the Hermitian r
dom matrix ensembles.

We shall need a more refined asymptotic formula for
incompleteG function than Eq.~73!. For x*m and m@1,
the incompleteG function is dominated by the contributio
from the lower end point, so that@51,27#

G~m11,x!5e2x
xm11

x2mF11OS m

~x2m!2D G . ~88!

Accordingly, the kernel at zero temperature Eq.~71! reads
2-9
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Km
0 ~z1 ,z2!.

1

2p2tA12t2
e2[1/2(12t2)][ uz1u21uz2

2u2(t/2)(z1
2
1z2

2
1z1*

2
1z2*

2)] 1(1/2t)(z1
2
1z2*

2)

3E
2`

` E
2`

` drds

rs2m
e(2r 2/21 irz12s2/22 isz2* )/t1(m11)ln rs2 ln m! . ~89!
f

ng

r i

-
ra
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d by
,
-
the

e
-

e
y

on-
en-
For z1 ,z2;2An, m;n, andt;1, the two saddle points o
the r ~s! integral merge atr 5 iAn (s52 iAn). In order to
obtain a nontrivial result, we magnify this region accordi
to the scaling

zi52An1
xi

n1/6
1 i

yi

n1/2
,

m5n1n1/3t,

t2512
a2

n
, ~90!

and change the integration variables as

r 5 iAn1n1/6p, s52 iAn2n1/6q. ~91!

The subleading terms in Eq.~88! are of orderO(n21/6) in
this scaling limit and can be ignored. To the leading orde
n we obtain

Km
0 ~z1 ,z2!5A2

p

n1/3

a
ei (y12y2)2(1/a2)(y1

2
1y2

2)

3E
2`

` E
2`

` dp

2p

dq

2p

eip3/31 ip(x12t)1 iq3/31 iq(x22t)

2 i ~p1q!

5A2

p

n1/3

a
ei (y12y2)2(1/a2)(y1

2
1y2

2)

3E
2`

t

dt8Ai ~x12t8!Ai ~x22t8!, ~92!

where Ai(x) is the Airy function

Ai ~x!5E
2`

` dp

2p
eip3/31 ipx5E

0

`dp

p
cosS p3

3
1pxD . ~93!

The integral in Eq.~92! is called the Airy kernelKAi(x1
2t,x22t) ~see Ref.@2#, Sec. 18!, describing the edge corre
lations of the Gaussian Unitary Ensemble. By partial integ
tions one may express it in an alternative and more fam
form

KAi~x1 ,x2!5
Ai ~x1!Ai 8~x2!2Ai 8~x1!Ai ~x2!

x12x2
. ~94!

The scaling ofm in Eq. ~90! requires the introduction of a
finite temperature parameterh by
01613
n

-
r

b5
1

n1/3h
, ~95!

in contrast to the bulk scaling~78!. After replacing the sum
overm by an integral overt, the low-temperature limit of the
kernel ~69! is given by

K~z1 ,z2!5A2

p

n1/3

a
ei (y12y2)2(1/a2)(y1

2
1y2

2)

3E
2n2/3

`

dtKAi~x12t,x22t !
d

dt S 1

11et/hD
5A2

p

n1/3

a
ei (y12y2)2(1/a2)(y1

2
1y2

2)

3E
2`

`

dt
Ai ~x12t !Ai ~x22t !

11et/h
. ~96!

Due to the different orders of the level spacings in real a
imaginary directions, the zero-temperature kernel is fac
ized, unlike the bulk kernel, Eq.~52! of @32#, or our Eq.~76!.
Namely, the dependence ofKm

0 on the orderm is merely to
dilate the eigenvalue support, which can be compensate
a change of the real part of the eigenvalue coordinatex
→x2t. Accordingly, the effects of non-Hermiticity and fi
nite temperature are factorized. The former is reflected in
scaled kernel as a Gaussian blurring in they direction
whereas, as the temperatureh increases, the oscillation of th
scaled spectral density along thex direction is weakened to
ward the Poissonian limit. This is shown in Fig. 2 where w
plot the spectral density in the Hermitian limit given b
r(x)5*dt Ai( x2t)2/(11et/h).

V. NUMBER VARIANCE

The number variance in an arbitrary domainA of the com-
plex plane is given by

S2~L ! 5 L2E
A
d2z1E

A
d2z2Y2~z1 ,z2!

with L5E
A
d2zr~z!, ~97!

where r(z)5K(z,z), Y2(z1 ,z2)5uK(z1 ,z2)u2, and
K(z1 ,z2) is the spectral kernel defined in Eq.~77!. Apart
from edge correlations we have found that in the strong n
Hermiticity case the two-point correlations decay expon
2-10
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tially on a scale of one level spacing or less, which results
an asymptotic linear dependence of the number varianc
A with unit slope. Below we focus our analysis on the mo
interesting weak non-Hermiticity limit.

As will be seen in the figures below, the fluctuations
the eigenvalues increase with both increasing temperatuh
and increasing degree of weak non-Hermiticitya. The rea-
sons for such behavior are the following: For larger values
h, the correlations of distant eigenvalues are suppresse
sulting in stronger fluctuations and the slope of the asym
totically linear number variance increases withh. By increas-
ing the degree of non-Hermiticity, eigenvalues have m
room to avoid each other along the imaginary axis. As
consequence, spectral fluctuations are stronger and d
tions from Wigner statistics are observed.

In the limit h!1 we calculate the number variance for t
areaA5@2Lx/2,Lx/2#3(2`,`). Because of the normaliza
tion integral~84! we chooseLx5Lp/An so that the areaA
containsL eigenvalues on average. The dependence of
kernel onx is subleading in the thermodynamic limit. Th
allows us to rewrite the number variance as

S2~L !5L2
2p

n3/2E0

L

dr~pL/An2pr /An!

3E
2`

` E
2`

`

dy1dy2uK~z1 ,z2!u2, ~98!

where the prefactor includes a contribution from the Ja
bian of the transformation~75!. The integrals overy1 andy2
are easily performed in terms of the variablesu[y11y2 and
v[y12y2. The final result for the smallh limit of the num-
ber variance is thus given by

FIG. 2. The spectral density at the edge for different values
the temperature parameter, at zero non-Hermiticity.
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S2~L !5L22E
0

L

dr~L2r !Fsin2~pr !

p2r 2
e2a2r 2/L2

1
p2h2

4

1

aAp
E

2`

`

dtS sin2~ t !

sinh2~pht/2!

2
sin2~ t !

~pht/2!2D e2(1/a2)(t2pr )2G . ~99!

We observe that in this limit the finite temperature effe
decouple from the weak non-Hermiticity corrections. ForL
@1/h anda!L it can be shown from Eq.~99! that the num-
ber variance is given by

S2~L !5
a

p3/2
2

g

p2
1

h

2
L1O~1/L !, ~100!

whereg is the Euler constant. The term linear ina can be
calculated in theh→0 limit and was obtained in@32#,
whereas the term linear inh can be calculated fora→0 and
was derived in@37#. In Fig. 3, we show the smallh limit of
the number variance~99! for h50.1 and different values o
the non-Hermiticity parameter. We observe that t
asymptotic linear behavior given by Eq.~100! is already
reached well below the expected scale of 1/h. We remark
that for values ofh as large as 0.3, the smallh result~97! is
still very close to the exact result obtained with the kern
~77!.

The smallh result for the number variance~99! is also
valid for large values of the non-Hermiticity parameter. Plo
of Eq. ~99! for a@1 are shown in Fig. 4. We find that th
asymptotic result for the slope is still approximately given
h/2 and depends only weakly ona. For L!a we find that

f
FIG. 3. The smallh behavior of the number varianceS2(L)

versus L given in Eq. ~99! for h50.1 and values of the non
Hermiticity parameter as given in the legend of the figure.
2-11
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GARCÍA-GARCÍA, NISHIGAKI, AND VERBAARSCHOT PHYSICAL REVIEW E66, 016132 ~2002!
S2(L)→L, which is the result for strong non-Hermiticity
This crossover behavior was first found in the limith→0
@32#.

The imaginary part of the eigenvalues is of ordera. This
is shown in Fig. 5, where we plotr(y)/r(0) @with r(y)
given in Eq.~83!# versusy. Since the imaginary part of th
eigenvalues is of the same order as the spacing of the
part of the eigenvalues, the number variance computed f
rectangle 0,Imz,Dy!a is expected to be given b
S2(L)→L, whereL is the total number of eigenvalues in th
rectangle. This is shown in Fig. 6, where we plot the num
variance obtained from Eq.~97! using the kernel~82!.

VI. CONCLUSIONS

In this paper we have introduced a two-parameter
semble of complex random matrices with no Hermitic
conditions imposed. This ensemble interpolates between

FIG. 4. The number variance~99! is computed for large value
of the non-Hermiticity parametera.

FIG. 5. The renormalized spectral densityr r(y)5r(y)/r(0)
@with r(y) defined in Eq.~83!# in the center of the band is show
for different values of the non-Hermiticity parameter.
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Gaussian Unitary Ensemble, the Ginibre ensemble, and
Poisson ensemble. Using methods from statistical mecha
and properties of orthogonal polynomials, we have analy
this ensemble in two different limits: weak non-Hermitici
and strong non-Hermiticity.

We have shown that the joint eigenvalue distribution
our random matrix model coincides with the diagonal e
ment of the density matrix of a two-dimensional gas of sp
less fermions in the lowest Landau level at finite tempe
ture. The two parameters of our model have been interpre
in terms of a shape parameter of the two-dimensional dom
of eigenvalues~or particles! and a temperature.

In the strong non-Hermiticity limit, in the bulk of the
spectrum, the correlations of the eigenvalues are given
Ginibre statistics and decrease exponentially on the scal
the average level spacing. The situation is different near
surface of the spectrum, where, at zero temperature, the
relations decrease as an inverse square law in the directio
the surface. At finite temperature this power-law behav
changes into an exponential behavior. At very high tempe
tures the surface and the bulk are no longer distinguisha
In that case the two-point correlation function of the u
folded eigenvalues still decays exponentially but with an
ponent that is proportional to the temperature. In this way
Poisson limit is recovered at high temperatures.

In the weak non-Hermiticity limit there is no clear distinc
tion between the bulk and the surface, and the tempera
affects the correlation functions of the eigenvalues. In
low-temperature limit we have obtained a closed analyti
expression for the two-point correlation function, which r
produces critical statistics. We have found that, althou
level repulsion is still present, the number variance is asym
totically linear with a slope depending on the temperat
parameter but not on the non-Hermiticity parameter. A
markable feature is that the temperature and weak n
Hermiticity effects decouple in this region. Thus critical st
tistics is not modified by a weak non-Hermitian perturbatio

FIG. 6. The number variance given by the general formula~97!.
The domain of integration is a rectangle in the complex plane c
taining L eigenvalues and with a width given by 0,Im z,Dy.
The non-Hermiticity parameter is equal toa50.4 and the value
of h is equal to 0.1 for all curves. The number variance is alm
Poissonian forDy<a.
2-12



n
e
v
th

ta
no
u

.
a

y

ex-
do
s.

of

CRITICAL STATISTICS FOR NON-HERMITIAN MATRICES PHYSICAL REVIEW E66, 016132 ~2002!
Finally, let us explain a physical prediction of the prese
model. Since for critical statistics the slope of the numb
variance is related to the multifractal dimension of the wa
function and, in our model, the slope does not depend on
non-Hermiticity parameter, we predict that the multifrac
dimension of a physical system does not depend on the
Hermiticity parameter either. We thus predict the same m
tifractal dimensions for open and dissipative systems
simple model for which this prediction may be tested is
three-dimensional disordered system at the critical densit
ar-

y

ns

in

I.

-

01613
t
r
e
e

l
n-
l-
A

of

impurities and with several leads attached to it. We thus
pect that in the weak non-Hermiticity domain the leads
not affect the multifractal dimension of the wave function
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